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Abstract 

 

A challenge in road traffic operations and management is that it is not possible to process 

data in real-time and use the output in control algorithms. This is due to the fact that by the 

time data are processed and a control measure applied, the traffic will have passed. A 

solution to this is to predict the traffic state based on assessments of current and past 

measurements. In the work described in this paper, forecasting the state of traffic volume was 

achieved using a Kalman filter that was employed in a dynamic state-space model framework 

where parameters of the state are permitted to change with time. 

 

Introduction 
 

The need for forecasting with the Kalman filter arose from a challenge in processing real-

time traffic data. This is due to the fact that by the time processing is completed and a control 

measure applied, the traffic will have passed. A solution to this problem is to forecast the 

traffic state and implement a control measure based on the forecast. 

 

The state-space framework considers a time series as the output of a dynamic system 

perturbed by random disturbances and ones in which parameters are allowed to vary over 

time [1]. A special case of general state-space models that are linear and Gaussian are also 

called dynamic linear models. A Kalman filter is an optimal recursive data processing 

algorithm, meaning that predictions are based on only the previous time-step’s prediction and 

the filter does not require all previous data to be stored and reprocessed with new 

measurements. The filter is optimal in the sense that it minimizes the variance of the 

estimation error at each iteration process. A Kalman filter was used to analyze traffic data to 

make predictions on traffic volume for Interstate-84 (I-84) in Meridian, Idaho.    

 

The Kalman filter works by making a prediction of the future and comparing the estimate 

with real-time measurements. Along with the prediction, an error covariance is calculated. 

When the next measurement is taken, the algorithm calculates a correction of the state 

prediction using the new measurement along with the error covariance. The recursive 

algorithm uses only the current measurement and error covariance allowing for low 

computational cost and on-line forecasting. 
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High-resolution (5-minute aggregate) data—volume, occupancy, vehicle classification, and 

average lane speed—were collected on I-84 near the Meridian Road and Eagle Road 

interchanges. Six radar based (SmartSensor10 from Wavetronix) sensing devices were 

chosen to capture the data from November 7-15, 2013.  

 

Volume data (depicted in Figure 1) for I-84 mainline, prior to the Eagle Road eastbound loop 

on-ramp, was of interest to forecast. Weekend observations were removed as typically 

weekend traffic volume is significantly lower and is not of interest to forecast at this time. 

The work reported here on traffic forecasts is a part of a bigger project, which will use the 

traffic forecasts in the control of on-ramp volumes through metering. 

 

 

Figure 1. Five-minute average volumes with weekend data removed 

 

State-Space Framework 
 

State-space models can be used for modeling univariate non-stationary time series that allow 

for natural interpretation as a result of trend and seasonal (periodic) components [1, 2]. A 

local level model is a time series where observations can be modeled as random fluctuations 

around a stochastic level (described by a random walk). An extension to the local level model 

is one with linear trend and seasonal components. A stochastic local level model with a 

seasonal component was constructed and its parameters estimated by maximum-likelihood 

estimation (MLE) in the “R” language and environment for statistical computing [3]. 

 

The main tasks for the given state-space model were to make inference on the unobserved 

traffic state and predict future observations based on part of the observation sequence. 

Estimation and forecasting are solved by computing conditional distributions of the traffic 

state, given the available information. In dynamic state-space models, the Kalman filter 

provides the formulas for updating our current inference on the state vector. 
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Kalman Filter 
 

The general problem that the Kalman filter addresses is the estimation of the state �� of a 

discrete-time controlled process that is governed by the general state equation [4]:  

 �� = ������ + �� (1) 

 

based on measurements 	� according to the observation equation:  

 	� = 
��� + �� (2) 

 

where �� and 
� are known matrices and �� and �� are independent white noise sequences 

with wt ~ Ɲ(0,Qt) and vt ~ Ɲ(0,Rt). 

 

The Kalman filter can be thought of as a recursive two stage prediction and measurement 

update algorithm with the prediction stage equations given by: 

State estimate (a priori): 

 ���|��� = �������|��� (3) 

Error covariance estimate (a priori): 

 ��|��� = ������|������ + ��  (4) 

 

The predicted state estimate is also known as the a priori state estimate because it does not 

include information from the current time step. In the measurement update stage, the 

prediction is combined with the current observation information to refine the state estimate 

and is known as the a posteriori state estimate. The measurement update equations are given 

by 

 

Measurement innovation: 

      	�� = 	� − 
����|��� (5) 

The innovation covariance:  

          �� = 
���|���
�� + �� (6) 

Kalman filter gain: 

                                                              �� = ��|���
������ (7) 

State estimate (a posteriori) 

       ���|� = ���|��� + ��	��  (8) 

Error covariance estimate (a posteriori): 

                ��|� = ��|��� − ��
���|���  (9) 

 

The Kalman filtering state matrix: 

                                                             �� = �1 0
0 −1� (10) 

With noise covariance: 

    �� = �12.01 0
0 −1� (11) 

 

Observation design matrix 

                                                              
� = �1				1� (12) 
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and observation noise: 

 �� = �58.75� (13) 

A Kalman filter computed one-step ahead values for the state vector, together with their 

variance/covariance matrices.  

 

A Kalman smoother computed smoothed values of the state vectors together with their 

variance/covariance matrices. The smoothing algorithm estimates the state sequence at times 

1,...,t, given the data y1,…yt, by a recursive algorithm. 

 

 
Figure 2. Measured traffic state with one-step ahead forecasts, shown in detail 

 in second and third plots 
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As seen in Figure 2, the Kalman filter had a “burn-in” time through about 25 five-minute 

observation periods. The filter’s one-step ahead forecasts appear to produce good predictions 

after this period. 

  

 
 

Figure 3. Smoothed state estimates, shown in detail in second plot 

 

The Kalman smoother’s output is shown in Figure 3. The smoothing algorithm is not an ideal 

solution when online processing is required, since it uses the sequence of observations up to 

the current observation. It can, however, provide more reliable estimates by using additional 

measurements made after the time of the estimated state. 

 

Model Validation 

 

The model was validated using ramp flows from Eagle Road interchange eastbound on-ramp 

from one day of observations from 6 AM-12PM. A smaller data set was chosen with larger 

deviations in observations to test the Kalman filters “tuning” time and performance. It should 

be noted that the model was calibrated against the five-minute traffic volume data and 

validated against the hourly traffic flows. 
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Figure 4. Eagle Road on-ramp one-step ahead flow predictions 

 

As seen in Figure 4, the model’s one-step ahead forecasts appeared to converge to reasonable 

estimates relatively early. Note that at the second time step, sensors recorded a negative flow, 

and the Kalman filter was able to process the noisy measurement. Smoothed estimates from 

the Kalman filter are shown in Figure 5. 

 

 

 
 

Figure 5. Eagle Road on-ramp smoothed estimates 

 

Conclusion 

 

The present model is based on the idea that the observations yt for traffic volume are 

incomplete and a noisy function of the unobservable state process xt. The unobservable state 

process is the actual traffic volume. We can only observe this through noisy measurements 

and are modeling an abstraction of it.  
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The traffic volumes observed on I-84 are characterized by a mixture of smooth gradual 

changes over a day as well as rapid fluctuations that occur during a twice-daily more 

congested period. To capture these dynamics, the traffic state was modeled in a state-space 

framework with its predictions performed by a Kalman filter. A polynomial state-space 

model with stochastic local level and seasonal components parameters were estimated by the 

maximum likelihood estimation (MLE) method. The uncertainty associated with the MLE’s 

standard errors were 6.11 and 10.70. Plots of the Kalman filters output appeared that it 

“tuned” relatively early and had good performance. 

 

The state-space equations should be formulated to represent the system being observed. 

Since this is not always possible, the evolution of the predictions from the Kalman filter may 

not be the minimum error variance. However, the method described in this paper can be used 

in many areas where estimation of the traffic state is needed such as dynamic traffic 

management and control. When applied to travel speeds, this methodology may provide real-

time freeway travel time predictions. A real-time, short-term traffic flow forecasting was 

presented in this paper. Such a procedure can be incorporated into an adaptive ramp metering 

scheme for better traffic management. 
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